
NASA Contractor Report 198308

ICASE Report No. 96-22

ICA

AN EVALUATION OF ARCHITECTURAL PLATFORMS

FOR PARALLEL NAVIER-STOKES COMPUTATIONS

D. N. Jayasimha

M. E. Hayder

S. K. Pillay

NASA Contract No. NAS1-19480

March 1996

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-0001

AN EVALUATION OF ARCHITECTURAL PLATFORMS
FOR PARALLEL NAVIER-STOKES COMPUTATIONS

D. N. Jayasimha

Department of Computer and Information Science

The Ohio State University

Columbus, OH 43210

j ayasim@cis.ohio-st ate.edu

M. E. Hayder*

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

hayder_icase.edu

S. If. Pillay

Scientific Engineering Computing Solutions Office

NASA Lewis Research Center

Cleveland, OH 44142

spillay_lerc.nasa.gov

Abstract

We study the computational, communication, and scalability characteristics of a Compu-

tational Fluid Dynamics application, which solves the time accurate flow field of a jet using

the compressible Navier-Stokes equations, on a variety of parallel architecture platforms.

The platforms chosen for this study are a cluster of workstations (the LACE experimental

testbed at NASA Lewis), a shared memory muItiprocessor (the Cray YMP), and distributed

memory multiprocessors with different topologies -- the IBM SP and the Cray T3D. We

investigate the impact of various networks connecting the cluster of workstations on the per-

formance of the application and the overheads induced by popular message passing libraries

used for parallelization. The work also highlights the importance of matching the memory

bandwidth to the processor speed for good single processor performance. By studying the

performance of an application on a variety of architectures, we are able to point out the

strengths and weaknesses of each of the example computing platforms.

*This research was supported in part by the National Aeronautics and Space Administration under
NASA Contract No. NAS1-19480 while the second author was in residence at the Institute for Computer
Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton. VA 23681-
0001.

1 Introduction

Numerical simulations play an important role in the investigation of physical processes as-

sociated with many important problems. The suppression of jet exhaust noise is one such

problem which will have a great impact on the success of the High Speed Civil Transport

plane. The radiated sound emanating from the jet can be computed by solving the full

(time-dependent) compressible Navier-Stokes equations. This computation can, however, be

very expensive and time consuming. The difficulty can be partially overcome by limiting the

solution domain to the near field where the jet is nonlinear and then using acoustic analogy

(see [12]) to relate the far-field noise to the near-field sources. This technique requires obtain-

ing the time-dependent flow field. In this study we concentrate on such flow fields near the

nozzle exit. We solve the Navier-Stokes equations to compute time accurate flow fields of a

supersonic axisymmetric jet. Our code is computationally very intensive and requires many

hours of CPU time on the Cray Y-MP. With the advent of massively parallel processors and

networks of workstations (NOWs), scientists now have the opportunity to parallelize compu-

rationally intensive codes and reduce turnaround time at a fraction of the cost of traditional

supercomputers. Recognizing this, a number of researchers [5, I0, 14, 18] have studied CFD

(Computational Fluid Dynamics) applications on specific parallel architectures. Our goal in

this study is to implement the numerical model derived from the CFD application described

above on a variety of parallel architectural platforms.

The platforms chosen for this study, all from the NASA Lewis Research Center, represent

a spectrum of parallel architectures that have been proposed to solve computationally in-

tensive problems: a shared memory vector multiprocessor (the Cray YMP), two distributed

memory multiprocessors with different topologies-- the IBM SP and the Cray T3D, and

a cluster of workstations connected via many networks (the Lewis Advanced Cluster Envi-

ronment (LACE) [9] experimental testbed). One important architecture that has not been

considered in our study is cache-coherent, massively parallel processors typified by the DASH

architecture [Ii].

An earlier paper by the authors presented the results of a study of this application on

LACE [6]. This paper differs from the earlier one in two important aspects: i) It is compre-

hensive covering a gamut of architectures while the other examined the feasibility of NOW

architectures as low cost alternatives to expensive supercomputers and massively parallel

processors, ii) It focuses on the relationship of the performance results to the computation

and communication characteristics of the application, to the architectural aspects of the net-

works and the processing nodes, and to the programming tools. We have not laid emphasis

on the physical aspects of the application or the the details of the numerical model as we

have done in the other paper in keeping with the readership of two disparate communities.

For the sake of completeness, however, we have included the relevant details from the other

paper in this one.

In the next section we briefly discuss the governing equations and the numerical model of

the application. Section 3 has a discussion of the parallel architectures used in the study

and the tools used for parallelizing the application. The parallelization of the application

is the subject of Section 4. Section 5 describes the experimental methodology. Section 6

presents a detailed discussion of the results. The paper concludes with a brief discussion of

the lessons learned from this study and the issues that merit further investigation.

2 Numerical Model

We solve the Navier-Stokes and the Euler equations to compute flow fields of an axisymmetric

jet. The Navier-Stokes equations for such flows can be written, in polar coordinates as

LQ = S

where

OQ OF OG

o-7 + _ + Or = S

(;)Q = r pu

F-r
pu 2 - ,.rxz + P

puv - "rxr

pull - u'rx_ - v'r_,,. - gTx

G_r I)puv - "r_

PV2 - "5,. + P

pv H - UT_,. -- v'r,.,. -- aTr

I°)S= 0
P - _oo

0

F and G are the fluxes in the x and r directions respectively, and S is the source term that

arises in the cylindrical polar coordinates, _-_j are the shear stresses and tcTj are the heat

fluxes. In the above equations p, p, u, v, T, e and H denote the pressure, density, axial and

radial velocity components, temperature, total energy and enthalpy.

We use the fourth-order MacCormack scheme, due to Gottlieb and Turket [4], to solve the

Navier-Stokes and the Euler equations. This scheme uses predictor and corrector steps

to compute time accurate solutions. It uses one-sided differences (forward or backward) to

compute spatial derivatives at each predictor or corrector step. For the present computations,

2

the operator L in the equation LQ = S, or equivalently Qt + Fz + Gr = S, is split into two

one-dimensional operators and the scheme is applied to these split operators. We define L1

as a one-dimensional operator with a forward difference in the predictor and a backward

difference in the corrector. Its symmetric variant L: uses a backward difference in the

predictor and a forward difference in the corrector. The predictor step in L1Q for the one-

dimension model/split equation Qt = Fz + S is written as

(_i = Qn __ 6__x {7(F/__1 _ F n) _ (F_n+2 _ F__l) } __ AtSi

and the corrector step as

Qg÷' = + Q7- __At 7/_,
6"_-'-x{ (, -- .t_i-l) -- (P,:-] -- __2)} + At,..q,]

Similarly in L2 the predictor step is

n At {7(F: - F_,) - (F?_, - FL_)} + AtS,
Q_ = Qi 6Ax

and the corrector step is

At {7(y, - 2,+1)- (_P,+,- + Ats,]

This scheme becomes fourth order accurate in the spatial derivatives when alternated with

symmetric variants [4]. For our computations, the one dimensional sweeps are arranged as

Q,_+I = LlxLlrQn

Q,_+: = L_ L2=Q '_+1

This scheme is used for the interior points. In order to advance the scheme near boundaries,

the fluxes are extrapolated outside the domain to artificial points using a cubic extrapolation

to compute the solution on the boundary. We use the characteristic boundary condition at

the outflow. In our implementation, we solve the following set of equations to get the solution

at the new time for all boundary points.

Pt - pcut = 0

Pt + pcut = R2

Pt - c2Pt = R3

V t =1_ 4

where P_ is determined by which variables are specified and which are not. Whenever the

combination is not specified, P_ is just those spatial derivatives that come from the Navier-

Stokes equations. For further details see [6].

3

X MOMENTUM

UR LEVELS

1
1.500
0.00 DEG
9.36x10"'6
1.50x10"'2

25_100

MACH
ALPHA
Re
TIME
GRID

Figure 1: Axial momentum in an excited axisymmetric jet

Let r be the radius of the nozzle. Figure 1 shows a contour plot of axial momentum from the

solution of the Navier-Stokes equations for a domain of size 50r in the axial direction and

5r in the radial direction with a 250 x 100 grid. The size of the domain and the chosen grid

represent a reasonable problem size. The result was obtained after about 16,000 time steps.

For all other results in this paper, we have used the same grid, but run the experiments for

5000 time steps to keep the computing requirements reasonable.

3 Parallel Computing Platforms

This section contains a brief discussion of the various platforms used in the study together

with the parallelization tools used.

3.1 NOW

The LACE testbed is regularly upgraded. The present configuration has 32 RS6000 processor

nodes (nodes 1-32) and an RS6000/Model 990 (node 0) which is the file server. These

nodes or subsets of them are connected through various networks with different speed and

connection characteristics. All the nodes are connected through two Ethernet networks (10

Mbits/sec (Mbps)); one of them is for general use and the other is dedicated to "parallel"

use. Nodes 9--24 are interconnected through a FDDI interface with a peak bandwidth of 100

Mbps. It is convenient, for our purposes, to consider the nodes to be partitioned into a lower

half (nodes 1-16) and an upper half (nodes 17-32). The lower half has RS6000/Model 590

CPUs (the CPU hasa 66.5MHz clock, 256KB data- and 32KB instruction caches)with the
following networksinterconnectingthe nodes:anATM network capableof a peakbandwidth
of 155Mbps and IBM's ALLNODE switch, referred to asALLNODE-F (for fast), capable
of a peak throughput of 64Mbps per link. The upper half has the slowerRS6000/Model
560 CPUs (the CPU has a 50 MHz clock, 64KB data- and 8KB instruction caches)and
is connectedthrough IBM's ALLNODE prototype switch, referred to as ALLNODE-S (for
slow), capableof a peak throughput of 32Mbpsper link. The ALLNODE switch is avariant
of Omegainterconnectionnetwork and is capableof providing multiple contentionlesspaths
betweenthe nodesof the cluster (a maximum of 8 paths can be configuredbetweensource
and destination processors). The present setup doesnot permit the use of more than 16
processorsusing the faster networks. The nodeshave varying main memory capacity (64
MB, 128 MB, 256 MB, and 512 MB). We have used the popular PVM (Parallel Virtual
Machine)messagepassinglibrary (version3.2.2) to implement our parallel programs. We
will refer to the LACE cluster with RS6000/Model560 processorsas the LACE/560 and
thosewith the RS6000/Model590processorsasthe LACE/590.

3.2 Shared Memory Architecture

We used the Cray Y-MP/8, which has eight vector processors, for this study. The Cray

Y-MP/8 has a peak rating of approximately 2.7 GigaFLOPS. It offers a single address space

and the communication between processes executing on different processors is through shared

variables. We parallelized the application by using explicit DOALL directives in addition to

exploiting the features of the parallelizing compiler on the Cray.

3.3 Distributed Memory Architecture

We parallelized the application on two distributed memory multiprocessors- the IBM SP1

and the Cray T3D. The IBM SP1 has 16 processing nodes (the CPU in each node is a

RS6K/370 with a 50 MHz clock, 32KB data and instruction caches). The original system

has been software upgraded to make it function like a SP2. We will refer to this system

as the IBM SP in the paper. The nodes of the SP are interconnected through a variant of

the Omega network [17]. This network, similar in topology to ALLNODE, permits multiple

contentionless paths between nodes. We parallelized the application using MPL (Message

Passing Library), IBM's native message passing library and PVMe, a customized version of

PVM (version 3.2) developed by IBM for the SP.

The Cray T3D is also a distributed memory multiprocessor with the topology of a three

dimensional torus [15]. The machine used in our study has 64 nodes (8 × 4 x 2) (each node

has a CPU with a clock speed of 150 MHz and a direct mapped cache of 8KB), of which

only 16 were available in single user mode. Though the T3D supports multiple programming

models, we programmed the machine using the message passing paradigm resorting to Cray's

customized version of PVM (version 3.2).

4 Parallelization

The factors which affect performance are listed below.

1. Single processor performance: we will explain various optimizations which resulted in

80% improvement in performance.

2. Communication cost: this cost depends on both the number of communication startups

and the volume of data communicated. Usually, the startup cost is 2-3 orders of magnitude

higher than the per item (usually byte) transfer cost. One method to reduce the effect of

startup cost is to group data to be communicated into long vectors.

3. Overlapped communication and computation: it is desirable that communication be

overlapped with computation as far as possible. Increasing the amount of overlapping,

however, could lead to finer granularity of communication which then leads to a higher

number of startups.

4. Bursty communication: such communication could overwhelm the network's throughput

capacity temporarily leading to increased communication cost and process waiting time.

Some amount of burstiness is inevitable since parallel programs are usually written in the

SPMD (single program multiple data) style. There is also usually an inverse relationship

between bursty data and the number of communication startups.

From the above discussion it is clear that there is a subtle relationship among communication

startup cost, overlapping communication with computation, and bursty communication.

For the solution of Navier-Stokes equations, hereafter referred to as Navier-Stokes, each

internal subdomain exchanges its two flux values, velocity, and temperature along the bound-

ary with its appropriate (left or right) neighbor. To reduce the number of communication

startups, we group communication- first, all the velocity and temperature values along a

boundary are calculated and then packaged into a single send. We use a similar scheme for

the flux values that need to be communicated.

The computational and communication requirements of the application are shown in Tables

1 and 2. It is seen that the solution of Euler equations, hereafter referred to as Euler, has

roughly 50% of the computation the communication volume requirements of Navier-Stokes

although the computation to communication volume ratio is about the same. Note that the

communication requirements are shown on a per processor basis. To give some idea of

the effects of communication, consider Navier-Stokes to be executing on a network of 10

workstations connected via Ethernet. Assume a reasonable throughput of 20 MFLOPS per

processor and the maximum throughput of 10 Mbps for Ethernet. The computation time

will then be approximately 725 seconds (145,000/(10 x 20)) while a lower bound on the

communication time, ignoring the effect of startups, is 1000 seconds (1000 x 10/10)! Table

2 shows the ratio of computation to communication for the application in units of floating

point operations/byte transferred per processor and floating point operations/startup per

processor.

The application is parallelized by decomposing the domain by blocks along the axial direc-

tion only. Two dimensional partitioning was not attempted since a simple analysis shows

Appln

Table 1: Application Characteristics

Total Comp.
(in FP Ops (x 106))

Comm./Processor
Start-ups Volume (MB)

N-S 145,000 80,000 120 (960Mb)
Euler 77,000 20,000 64 (512Mb)

Table 2: Computation-CommunicationRatios

No. of Procs.
Nav-Stokes

2 604
4 302
8 151
16 76

FPs/Byte
Euler
601
301
150
75

FPs/Start-up
Nav-Stokes Euler

906K 1925K
453K
227K
113K

963K
481K
241K

that for the chosengrid size,suchapartioning performsworsethan a 1-Dblock partitioning.
For example,with a 2-D partitioning of 16processors(4 x 4 blocks), the ratio of the number
of bytestransferredcomparedto 1-Dpartitioning is 1.25.This ratio will, of course,decrease
when we increasethe problem size. Another disadvantagewith 2-D partitioning is that the
number of start-ups is higher. For the aboveexample, the correspondingratio for the two
partionings is 1.6;this ratio doesnot decreasewith the problem size. Sincethe startup cost
dominatesthe transmissioncostin mostcurrent architecturesincluding the onesusedin this
study (the ratio is highest for LACE and least for Cray T3D) and the averagetransmission
volumeper startup is only moderate(Table 1), wedid not experimentwith 2-D partitioning.

The parallelizationon the Cray Y-MP wasdonedifferently (it wasmucheasieralso)sinceit
is a sharedmemory architecture: wedid somehand optimization to convert someloops to
parallel loops,usedthe DOALL directive, and partitioned the domain along the orthogonal
direction of the sweepto keepthe vector lengths largeand to avoidnon-strideaccessto most
of the variables.

5 Experimental Methodology

The performance indicator is the total execution time. All experiments were conducted in

single user mode. The execution times reported are for single runs since we found that the

experiments were repeatable with negligibly small discrepancies. For example, with LACE,

the deviation from the mean is about 1% or less ([6]).

Experiments using a single processor were done on an IBM RS6K (Model 560) workstation

of LACE. The performance of the original code (Version 1) for both applications is shown

7

in Figure 2.

E

C

X

W

16OOO

12OOO

4OOO

m

I

I

I

I

I

I

I

I

I

!

!

I

!

!

I

I

I

!

I

!

I

!

!

I

I

!

!

!

!

0 1

m

I

I

!

O

I

I

I

!

I

!

I

I

!

I

I

I

I

!

I

I

I

I

I

I

I

I

I

I

• !

2

_, NavJer-Stokes.... Euler

m

I I

I 1 "--"

I I I

I I I

I I I

I I I

I I I

I I I

, I I I

: ! I I

I I I

: I i I

I i I

I i i I
I I I !

i I I II I I

I I I !

I I I !I I I

I I !

I I I
I

I I I

3 4 5

Version

Figure 2: Execution time on a single processor (RS6000/560)

We found that most parts of the application were limited by the poor performance of the

memory hierarchy involving the cache and the main memory. Improved cache performance

was the key and this was achieved by accessing arrays in stride-1 fashion wherever possible

(using the loop interchange optimization). The modified program, called Version 3 (the

optimizations were performed in a different order than presented in the paper), resulted in

this version running faster by approximately 50%, compared to Version 2. We experimented

with a number of other modifications, the following of which yielded some improvement:

better register usage by collapsing multiple COMMON blocks into a single one (Version 5),

strength reduction (replace exponentiations by multiplications wherever feasible- Version 2),

replace division by multiplication wherever feasible since the former are relatively expensive

(a reduction from 5.5 × 109 divisions to 2.0 x 109 was achieved- Version 4). All these

optimizations yielded an overall improvement of roughly 80% (from 9.3 MFLOPS to 16.0

MFLOPS) as illustrated in Figure 2. The optimizations were incorporated in sequence so

that Version 5 contains all the above mentioned optimizations.

We parallelized Version 5 on different computing platforms in accordance with the ideas

presented in the last section. On each platform, we measured the execution time as a

function of the number of processors (up to 8 with Cray Y-MP, up to 16 with LACE, IBM

SP, and Cray T3D).

We have studied the performance of LACE with four networks of differing characteristics

8

using "off-the-shelf' PVM as the message passing library. With the IBM SP, we have studied

the impact of parallelizing the application with two message passing libraries- IBM's native
MPL and a customized version of PVM called PVMe.

In all experiments, wherever feasible, we have separated the execution time into two additive

components: processor busy time and non-overlapped communication time. The

processor busy time is itself composed of the actual computation time and the software

overheads associated with sending and receiving messages. An accurate separation of these

components is not possible, however, unless we have hardware performance monitoring tools.

The non-overlapped communication time could also include the idle time of a processor

waiting for a message.

Version 5 of the application does not make any special attempts to overlap communication

with computation. Version 6 does overlapping by computing the stress and flux components

of the interior part of each subdomain while the processor is waiting for the velocity and

temperature vectors from its neighbors. Figure 3 shows the timeline of a processor's activity

for both these versions. As mentioned earlier, the two "flux columns" nearest each boundary

are combined into a single send. We have experimented with sending the flux columns one
at a time to avoid bursty communication. This variant is called Version 7.

VERSION 5 VERSION 6

Calculate Calculate

VEL, TEMP VEL, TEMP

Send

EL, TEMP

Receive

VEL. TEMP

Calculate

$TRF.,S$, FLUX

Send

FLUX

Receive

FLUX

Update Subdomam

Overlapped

Commtmication and

C°mlmtati°n _I

Send

VEL, TEMP

Calculate

STRESS, FLUX at interior

Receive

VEL, TEMP

Calculate

STRESS, FLUX at Boundary

Sead

FLUX

Update Interior

Receive

FLUX ,- Bou_lxy

Upcl_'P Boundary

Figure 3: Timeline of processor activity

We found that the execution time improvement with Versions 6 and 7 were either minimal

or even worse in many experiments. Hence all our experiments were conducted with Version

5. We do mention, however, the impact of these versions on different networks of LACE in

Section 6.1.

The next section presents a detailed discussion of the results from our experiments.

9

6 Results

The execution times of Navier-Stokes and Euler have been plotted as a function of the

number of processors for each computing platform, using a log-log scale to facilitate mean-

ingful presentation.

6.1 Performance of LACE

10 4

lo •

_P

e-
o

102

101

(3_E_ ALLNODE-F
[3- - --E3ALLNODE-S
_...... A LACE/560 Ethernet

, , I

10
Number of Processors

Figure 4: Navier-Stokes execution time on LACE

Figure 4 shows the performance of Navier-Stokes on different networks of LACE- ALLNODE-

F, ALLNODE-S, and the upper-half Etheraet. The performance of the ATM and the FDDI

networks are almost identical with ALLNODE-F and ALLNODE-S respectively. Hence the

performance of the ATM and FDDI networks are not shown.

The close performance of ALLNODE-F and ATM, and ALLNODE-S and FDDI can be

attributed to the following reason: the slower link speed of ALLNODE (64 Mbps/32 Mbps)

is balanced by its ability to set up multiple contention-free paths while ATM (155 Mbps)

or FDDI (100 Mbps) with their faster links do not permit multiple physical paths in the

zmtwork.

With ALLNODE, the execution time falls almost linearly with increasing number of processors-

sublinearity effects begin to show, however, beyond 12 processors. ALLNODE-F is about

70%-80% faster than ALLNODE-S. This can be attributed to both an improved network

10

(which is twice asfast) and the superiorperformanceof the 590model (33%faster clock,data
andinstruction cacheswhich are4 times bigger,and memorybuswhich is 4 timeswider than
the 560- thesecontribute to faster instruction execution,better cachehit ratios, and lower
cachemiss penalty respectively). Ethernet performancereachesits peak at 8 processors-
beyond this, the communication requirementsof the application overwhelm the network.
The inability of Ethernet to handle traffic beyond 8 processorsis shown by the following
simple argument: Table 2 shows that with 8 processors, Navier-Stokes produces a byte

for communication after it has completed 151 floating operations on the average. Consider

a 1 second interval and each processor operating at 20 MFLOPS. During this interval, each

processor produces 1.06 Mb for communication, on the average. This translates to approx-

imately 8.5Mbs from all the 8 processors. Ethernet is capable of supporting 10Mbps peak-

the performance seen by an application will be a fraction of this bandwidth, however; it is

not surprising, therefore, the performance gets steadily worse beyond 8 processors.

104

103

._E
I-

10 2

10'

13-....... _---

(_--O LACE/5g0 Processor busy time

[3- - -El ALLNODE-F Non-overlapped Comm.

LACE/560 Processor busy time

A - - A ALLNODE-S Non-overlapped Comm.

-_-.---_ Non-overlapped Comm. (Ethernet)

Number of Processors

Figure 5: Components of execution time (Navier-Stokes_ LACE)

Figure 5 aid in a more in depth analysis of the performance of LACE. The execution time is

separated into two additive components as explained in the previous section. It is seen that

the processor busy time falls linearly with the number of processors. With Ethernet, the

non-overlapped communication time increases superlinearly with the number of processors.

With both ALLNODE switches, this time remains steady up to 10 or 12 processors beyond

which it begins to rise. The difference in processor busy times and the communication times

between the two ALLNODE configurations can be attributed to the superior node and the

network respectively.

11

10 4

103

I--
c-
o

o

10=

e_e Version 5 ALLNODE-S
- - .e Version 5 Ethernet

Version 6 ALLNODE-S
=-- - -=Version 6 Ethernet

Version 7 ALLNODE-S
- - _ Version 7 Ethernet

101 I , i , , I i

1 lO
Number of Processors

Figure 6: Communication optimization (Navier-Stokes; LACE)

Figures 6 and 7 show the performance of Versions 5, 6, and 7 with Ethernet and ALLNODE-S

(the trends are similar with ALLNODE-F). The performance of Version 6 (with overlapped

communication and computation, as explained in Section 5) is very close to that of Ver-

sion 5 for both Ethernet and ALLNODE-S. Overlapping does not increase the number of

communication startups. With Version 6, since computations for the subdomain have to be

broken into separate ones for the interior and the boundary (only the former computations

can be overlapped with communication), the loop setup overheads are higher. Further, the

cache performance also degrades slightly due to loss of temporal locality. Consequently, these

overheads offset any gain due to overlapping.

Version 7 attempts to reduce bursty communication at the cost of increased number of

communication startups. Not surprisingly, Ethernet performs better with Version 7 than

with Version 5. The performance of ALLNODE-S is appreciably worse than Version 5,

however. Since ALLNODE-S can handle the communication requirements of the application,

reducing bursty communication only harms the performance since the number of startups

increase.

6.2 Comparative Performance

Figures 8 and 9 show the performance of the application on the four computing platforms we

have chosen for this study-- LACE, Cray Y-MP, Cray T3D and IBM SP. The performance

12

104

103

I..-
t-
O

10 2

10 _

Version 5 ALLNODE-S

o-- - .e Version 5 I:thernet

Version 6 ALLNODE-S

o-- - -a Version 6 El_ernet

Version 7 ALLNODE-S

z, - - _ Version 7 Ethernet

1'0
Number of Processors

Figure 7: Communication optimization (Euler; LACE)

of LACE is reported for ALLNODE-F and ALLNODE-S.

Surprisingly, LACE, even with ALLNODE-S, outperforms SP even though the former uses

off-the-shelf PVM and the latter uses MPL, IBM's native message passing library. (Our

version of) MPL imposes a limit on the number of (non-blocking) send primitives that can

be simultaneously active- this limit is lower than the requirements of the application; hence,

we were forced to use blocking send primitives. We suspect this to be one contributing

factor to the relatively poor performance. The CPU on the SP is intermediate in speed (62.5

MHz clock) between the 560 (50 MHz) and the 590 (66.6MHz). Another contributor to the

poor performance of the SP is the relatively small size of the data cache (32KB compared

to 64KB on LACE/560 and 256KB on LACE/590).

For a comparison of ALLNODE-F and ALLNODE-S, see Section 6.1 (Figures 4 and 5).

Another surprising result is the relatively poor performance of Cray T3D which is consistently

worse than ALLNODE-F and is worse than ALLNODE-S for less than 8 processors. The

T3D's CPU has a peak rating which is 2.3X and 3X the rating of the 590 and 560 models,

respectively. We attribute the T3D's poor performance to the small direct-mapped cache

of 8KB size (both the 560 and 590 have 4-way set-associative date caches of sizes 64KB

and 256 KB respectively; in addition they have 2-way set associative instruction caches of

sizes 8KB and 32KB). Poor single-processor performance on the T3D has also been reported

elsewhere [17]. These results stress the importance of superior cache design to the overall

performance. A reasonably fast CPU with a large, set associative cache and a high bandwidth

13

Figure 8:

10 4

I03
®

I--
c
o

x

" 10 2

I i

_ "0- - -0

101

Cray Y-MP
A- - ._ IBM SP (RS6K/370)
B- - -Q ALLNODE-S

v-v Cray T3D
_, - - e ALLNC)DE-F

, , , , , , i , i J ,

10
Number of Processors

Execution time of Navier-Stokes on computing platforms

104

o
.__
I--
c
o

x

'" 102

101

....... 1JO

Number of Processors

Figure 9: Execution time of Euler on computing platforms

14

Table 3: Speedup Characteristics

No. of Procs. Architectural Platform

ALLNODE-S ALLNODE-F IBM SP Cray T3D

4 3.2 3.4 3.8 3.9

16 7.5 7.9 13.3 14.6

bus connecting the cache and main memory performs superior to a much faster CPU with

poorly designed CPU-cache and cache-main memory interfaces.

Table 3 shows the speedup characteristics of Navier-Stokes with various architectures.

The speedups, measured relative to the single processor performance of the corresponding

architecture, are shown with 4 processors and 16 processors to illustrate the network charac-

teristics of each architecture. Both T3D and SP exhibit very good speedup characteristics,

with almost linear speedup, indicating that the corresponding networks can sustain the com-

munication requirements of the application. Though both the ALLNODE networks have a

reasonable speedup at 4 processors, they degrade rapidly and the speedup is only modest

at 16 processors. It is only reasonable to expect this flattening trend to continue with in-

creasing number of processors on NOW architectures. Not surprisingly, ALLNODE-F has a

slightly better speedup than ALLNODE-S. Also, observe from Figures 8 and 9 that beyond

8 processors, T3D with its superior network speed (150 MB/sec peak transfer rate and a

relatively small setup cost) performs better than ALLNODE-S.

Cray Y-MP has by far the best performance. The execution time shown is the connect time

in single user mode (this includes the I/O time also which we were not able to separate

from the computation time). Considering the effect of connect time also, the Y-MP scales

modestly achieving a speedup of about 3.5 with 8 processors for both the applications. With

a profiling tool which simulates the execution of an 8-node Y-MP on a single node (and does

not include the I/O overheads), we obtained a speedup of 7.1. Observe that the LACE/590

with 16 processors is about 8_ faster than a single node of the Y-MP.

With architectures which use message passing libraries, the relatively poor performance can

be attributed to large setup overheads and the resulting increase in processor waiting times

with increasing number of processors. These overheads arise mainly from the multiple times

that data to be communicated is copied and from the context switching overheads that arise

in transferring a message between the application level and the physical layer of the network

for transmission or reception. If NOW architectures are to be feasible as massively parallel

processors, it is clear that both the interconnection network and the message passing library

be implemented efficiently. Such effort is already under way [1].

15

6.3 Comparison of Message Passing Libraries

Figures 10 and 11 compare the performance of the PVMe and the MPL message passing

libraries on the SP-- the execution times have been separated into non-overlapping compu-

tation and communication components. The graphs show that MPL is consistently faster

10 4

103

®
E

10=

101

H Processorbus_

e- --e Processor busy time with PVMe

H Non overlapped comm with MPL

13----[] Non overlapped comm with PVMe

i

lO

Number of processors

Figure 10: Comparison of MPL and PVMe (Navier-Stokes; IBM SP)

than PVMe by approximately 75% for Navier-Stokes and approximately 40% for Euler.

Observe also that the amount of non-overlapped communication is not only negligibly small

but that it decreases with the number of processors though the actual communication in-

creases. This is an interesting phenomenon since it implies that there is increased overlapping

of computation and communication with the number of processors. Note however that the

computation part also includes the setup overheads of communication. This phenomenon is

not seen in case of LACE (see Figure 4) where the non-overlapped communication increases,

further attesting to our previous observation that the MPL (and PVMe) library does not

perform as well as PVM does on LACE.

6.4 Load Balancing

Finally, how well is the application load balanced? The amount of computation for the appli-

cation is evenly distributed but this may not always translate to a load balanced execution.

We were able to measure the processor busy times (this time does not include the processor

16

E

10 4

10 3

10 2

101

H Processor busy t_me with MPL

- e Processor busy t_me with PVMe

H Non overlapped comm with MPL

B- -- e Non overlapped comm with PVMe"

Number of processors

Figure 11: Comparison of MPL and PVMe (Euler; IBM SP)

waiting time) for Navier-Stokes on each processor of the SP. Figure 12 shows that we were

able to achieve almost perfect load balancing.

7 Discussion and Conclusion

In this paper we have studied the computational, communication, and scalability characteris-

tics of a typical CFD application on a variety of architectural platforms. The study indicates

that NOW architectures have the potential to be cost-effective parallel architectures if the

networks are made reasonably fast and message passing libraries are efficiently implemented

to circumvent the traditional overheads involved in transferring a message between the ap-

plication level and the physical layer of the network.

The study also highlights the importance of single processor performance to achieve good

performance. With fast, off-the-shelf RISC processors available, the bottleneck seems to be

the performance of the cache and the memory hierarchy. A proper cache design is critical to

good performance. We believe that the reason for relatively poor performance of the T3D,

in spite of a fast processor, is the small, direct-mapped cache.

A traditional vector multiprocessor still outperforms multiprocessors of modest to medium

size. Parallelizing an application using message passing libraries is rather tedious and even

error-prone but with distributed memory multiprocessors, this effort is worthwhile since good

17

1500

100o

®
E

£
a. 500

0
0

_ m

J

4

,i
8

Processor Number

m

12

m _ m m

i

i
I
!

16

Figure 12: Processor busy times (Navier-Stokes; IBM SP)

scalability is achievable.

Resource limitations have forced us to limit our study to 16 processors. We hope to extend

the study to larger multiprocessors and to other parallelization tools as resources become

available. For reasons mentioned in Section 4, we have not explored decomposition along

both the axial and radial directions. A future goal is to conduct the study for a larger domain

to understand the physics of the problem better and a finer mesh to compute the jet noise

directly from the flow field. We plan to explore the effects of 2-D partitioning with a larger
domain and a finer mesh.

Acknowledgments

Part of this work was done while the first author was a Visiting Senior Research Associate

at NASA Lewis Research Center during 1993-94. Simulations were done while the second

author was in residence in the ICOMP program at NASA Lewis Research Center, Cleveland,
OH.

The authors would like to thank Kim Ciula, Dale Hubler, and Rich Rinehart for their

assistance with various aspects of the LACE and IBM SP architectures.

18

References

[1]

[2]

[3]

[4]

[5]

[6]

Anderson, T. A., Culler, D. E., Patterson, D. A., NOW team, "A Case for NOW

(Networks of Workstations)". IEEE Micro, February 1995, pp. 54 - 64.

Bailey, D. H., Barszcz, E., Dagum, L., Simon, H. D. "NAS Parallel Benchmark Results".

NAS Technical Report NAS-9_,-O01, October 1994.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R. and Sunderam, V. "PVM

3 User's Guide and Reference Manual", Technical Report ORNL/TM-12187, Oak Ridge

National Laboratory, Oak Ridge, TN, 1993.

Gottlieb, D. and Turkel, E. "Dissipative Two-Four Methods for Time Dependent Prob-

lems". Math. Comp. voh 30, 1976, pp. 703-723.

Hayder, M. E., Flannery, W. S., Littman, M. G., Nosenchuck, D. M. and Orszag, S. A.

"Large Scale Turbulence Simulations on the Navier-Stokes Computer". Computers and

Structures, vol. 30, no. 1/2, 1988, pp. 357-364.

Hayder, M. E. and Jayasimha, D. N. "Navier-Stokes Simulations of Jet Flows on a

Network of Workstations", AIAA Journal, voh 34, no. 4, April 1996, to appear.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

I14J

Hayder, M. E. and Turkel, E. "High Order Accurate Solutions of Viscous Problems".

31st AIAA Aerospace Sciences Conference, AIAA 93-3074, July 1993.

Hayder, M. E. Turkel, E. and Mankbadi, R. R. "Numerical Simulations of a High Mach

Number Jet Flow". 31st AIAA Aerospace Sciences Conference, AIAA 93-0653, January
1993.

Horowitz, J. C. "Lewis Advanced Cluster Environment". Distributed Computing for

Aerosciences Applications Workshop, NASA Ames Research Center, October 1993.

Landsberg, A. M., Young, T. R. and Boris, J. P. "An Efficient, Parallel Method for

Solving Flows in Complex Three Dimensional Geometries". 32nd AIAA Aerospace

Sciences Conference, AIAA 94-0413, January 1994.

Lenoski, D. E., et al. "The Directory-Based Cache Coherence Protocol for the DASH

Multiprocessor". Int'l Conf. on Computer Architecture, May 1990, pp. 148-159.

Lighthill, M. J. "On Sound Generated Aerodynamically, Part I, General Theory". Proc.

Roy. Soc. London, vol. 211, 1952, pp. 564-587.

Mankbadi, R. R., Hayder, M. E. and Povinelli, L. A. "The Structure of Supersonic Jet

Flow and Its Radiated Sound". AIAA Journal, vol. 32, no. 5, pp 897-906, 1994.

Morano, E. and Mavriplis, D. "Implementation of a Parallel Unstructured Euler Solver

on the CM-5". 32rid AIAA Aerospace Sciences Conference, AIAA 94-0755, January
1994.

19

[15] Oed,W. "The Cray ResearchMassivelyParallel System-Cray T3D", Technical Report,

Cray Research GmbH, November 1993.

[16] Scott, J. N., Mankbadi, R. R., Hayder, M. E. and Hariharan S. I. "Outflow Boundary

Conditions for the Computational Analysis of Jet Noise". 31st AIAA Aerospace Sciences

Conference, AIAA 93-4366, October 1993.

[17] Stunkel, C. B., Shea, D. G., Grice, D. G., Hochschild, P.H., Tsao, M. "The SP1 High-

Performance Switch", Scalable High Performance Computing Conference, May 1994,

pp. 150-157.

[18] Venkatakrishnan, V. "Parallel Implicit Unstructured Grid Euler Solvers". 32nd AIAA

Aerospace Sciences Conference, AIAA 94-0759, January 1994.

2O

REPORT DOCUMENTATION PAGE Fo,_ Approved
OMB No. 0704.0188

Public reportingburdenfor thiscollection of informationis estimatedto average! hourperresponseincluding the time forreviewng nstruct ons searchngexisting datasources,
gatheringandmaintaining the data needed,andcompletingand reviewingthecollection of information Sendcomments regardingthis burdenest mateor any otheraspectof this
collectionof information,including suggestionsfor reducingthis burden,to Washington HeadquartersServices,Directoratefor Information Operationsand Reports.12!5 Jefferson
Davis Highway,Suite 1204. Arlington.VA 22202-4302.and to the Officeof Managementand Budget,PaperworkReduction Project(0704-0188). Washington,DC 20503,

]. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 1 3. REPORT TYPE AND DATES COVERED

March 1996] Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

AN EVALUATION OF ARCHITECTURAL PLATFORMS

FOR PARALLEL NAVIER-STOKES COMPUTATIONS

6. AUTHOR(S)

D. N. Jayasimha

M. E. Hayder

S. K. Pilla_

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

C NAS1-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 96-22

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA CR-198308

ICASE Report No. 96-22

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report

Submitted to Journal of Supercomputing.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-U nhmited

12b. DISTRIBUTION CODE

Subject Category 60, 61

: 13. ABSTRACT (Maximum 200 words)

We study the computational, communication, and scalability characteristics of a Computational Fluid Dynamics

apphcation, which solves the time accurate flow field of a jet using the compressible Navier-Stokes equations, on

a variety of parallel architecture platforms. The platforms chosen for this study are a cluster of workstations (the

LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), and distributed

memory multiprocessors with different topologies -- the IBM SP and the Cray T3D. We investigate the impact of

various networks connecting the cluster of workstations on the performance of the application and the overheads

induced by popular message passing hbraries used for parallehzation. The work also highhghts the importance of

matching the memory bandwidth to the processor speed for good single processor performance. By studying the

performance of an apphcation on a variety of architectures, we are able to point out the strengths and weaknesses
of each of the example computing platforms.

14. SUBJECT TERMS

Computational Fluid Dynamics; Navier-Stokes and Euler Equations; Network of Work-

stations Architectures; Interconnection Network; Message Passing Library; Computa-

tion and Communication; Scalability; Shares Memory

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

22

16. PRICE CODE

A03

19. SECURITY CLASSIFICATION 20. LIMITATION

OF ABSTRACT OF ABSTRACT

Standard Form 298(Re¥. 2-89)
Prescribedby ANSI Std Z39-18
298-102

